Hybrid PSO Based Wavelet Neural Networks for Intelligent Fault Diagnosis

نویسندگان

  • Qianjin Guo
  • Haibin Yu
  • Aidong Xu
چکیده

A model of wavelet neural network (WNN) using a new evolutionary learning algorithm is proposed in this paper. This new evolutionary learning algorithm is based on a hybrid of Particle Swarm Optimization (PSO) and gradient descent algorithm (GD), and is thus called HGDPSO. The Particle Swarm Optimizer has previously been used to train neural networks and generally met with success. The advantage of the PSO over many of the other optimization algorithms is its relative simplicity and quick convergence. But those particles collapse so quickly that it exits a potentially dangerous property: stagnation, which state would make it impossible to arrive at the global optimum, even a local optimum. HGDPSO was proposed for neural network training to avoid premature and eliminate stagnation in PSO. The effectiveness of the HGDPSO based WNN is demonstrated through the classification of the fault signals in rotating machinery. The simulated results show its feasibility and validity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator

This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...

متن کامل

Using PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes

A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

A Fault Diagnosis Monitoring System of Reciprocating Pump

This paper develops the intelligent fault diagnosis system of reciprocating pump. The system takes fault diagnosis system as the core, using the Visual c++ as the software language. The software controls the data acquisition of pressure, position and flow signal synchronously. The different fault types corresponding signal curve is also different, so the main fault signal is pressure signal, fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005